ASA Postulate An **included side** is the side located between two consecutive angles of a polygon. In $\triangle ABC$ at the right, \overline{AC} is the included side between $\angle A$ and $\angle C$.

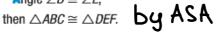
(shared side)

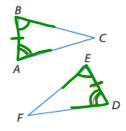
Postulate 4.3 Angle-Side-Angle (ASA) Congruence

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

Example If Angle $\angle A \cong \angle D$, Side $\overline{AB} \cong \overline{DE}$, and

Angle $\angle B \cong \angle E$,





Example 1: Write a two-column proof:

Write a two-column proof.

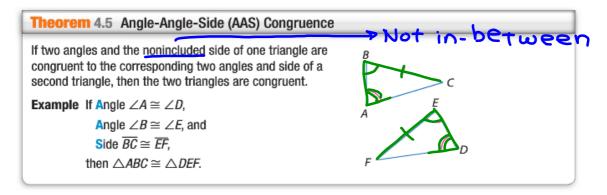
Given: \overline{QS} bisects $\angle PQR$; $\angle PSQ \cong \angle RSQ$.

Prove: $\triangle PQS \cong \triangle RQS$ SQ $\cong SQ$ SQ $\cong SQ$ SQ $\cong SQ$ This elf.

STATEMENTS	REASONS
1. as bisects LPQR,	1. Given
LPSQ≅ LRSQ	
2. ∠Pas = ∠ Ras	2. Def. of angle bisector
3. 5a≅5a	3. Reflexive Property
4. APQS= ARas	4. ASA

Example 2: Write a two-column proof: Given: \overline{ZX} bisects $\angle WZY$; \overline{XZ} bisects $\angle YX$ Prove: $\triangle WXZ \cong \triangle XZY$	implies $\angle WZX \cong \angle YZX$ $\times W$ implies $\angle WZX \cong \angle YZX$ implies $\angle WXZ \cong \angle YXZ$
STATEMENTS	REASONS
1. ZX bisects LWZY,	1. Given
XZ bisects LYXW	
2. LWZX = LYZX,	2. Def. of Angle Bisector
$\angle \omega xz \cong \angle Y Xz$	
3. ZX ≃ ZX	3. Reflexive Property
4. DWXZZDXZ	

AAS Theorem The congruence of two angles and a nonincluded side are also sufficient to prove two triangles congruent. This congruence relationship is a theorem because it can be proved using the Third Angles Theorem.

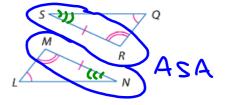


Why does AAS work? Observe the following proof:

Given: $\angle L \cong \angle Q, \angle M \cong \angle R, \overline{MN} \cong \overline{RS} \longrightarrow Given$

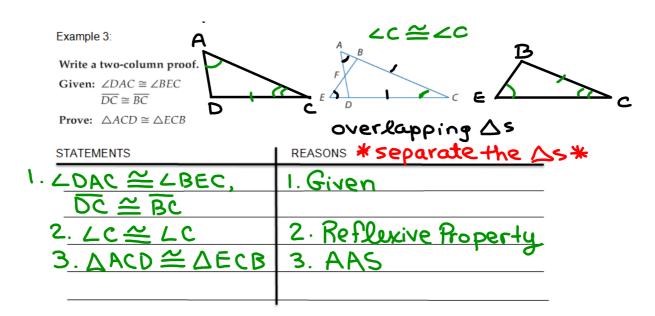
Prove: $\triangle LMN \cong \triangle QRS$

Proof:



STATEMENTS	REASONS
1. $\angle L \cong \angle Q$, $\angle M \cong \angle R$, $\overline{MN} \cong \overline{RS}$	1. GIVEN
2. ∠N ≅ ∠S	2. THIRD ANGLES THEOREM
3. ∆LMN ≅ ∆QRS	3. ASA

So, this will happen any time we are given two angles with a non-included side congruent to the corresponding two angles and non-included side. Therefore, Angle-Angle-Side is a congruence theorem (but remember, SSA and AAA are NOT!)



Example 4: Write a two-column proof.

Given: $\overline{RQ} \cong \overline{ST}$ and $\overline{RQ} \parallel \overline{ST}$ **Prove:** $\triangle RUQ \cong \triangle TUS$

hint: || Lines → 2 < s

STATEMENTS REASONS	
1. RQ = ST, RQ ST 1. Given	
2. LR = LT. LQ = LS 2. Alternate Interior Apples Th	·m.
(3. ΔRUQ ≅ ΔTUS 3. ASA	
> 3. LRUQ = LSUT 3. Vertical Angles Thm.	
4. DRUQ = DTUS 4. AAS	

